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ABSTRACT Traditional product aesthetic evaluation requires extensive preference labeling for each design,
limiting scalability and increasing costs. This study presents a novel single reference training approach
that enables aesthetic preference assessment through visual similarity to a single highly preferred product.
Using 30 home audio speakers, we collected aesthetic preference ratings from 44 participants on a 7-point
Likert scale. Four deep learning approaches—Pre-trained CNN,Auto-encoder, SiameseNetwork, and Triplet
Network—measured visual similarity between themost preferred reference products and remaining samples.
Results demonstrated significant correlations between visual similarity and aesthetic preference: the Triplet
Network achieved Pearson correlation coefficient r = 0.448 (p = 0.013), while Pre-trained CNN approach
yielded r = 0.478 (p = 0.008). After filtering high-variance products, correlations substantially improved
to r = 0.738 (p < 0.001). Principal component analysis of embedding vectors revealed interpretable
aesthetic dimensions, with specific components significantly correlating with novelty (r = 0.51 − 0.61),
harmony (r = 0.36 − 0.37), dynamics (r = 0.55 − 0.65), and complexity (r = 0.42 − 0.56). Interaction
models of multiple principal components increased explanatory power (R2 = 0.4065), demonstrating
that aesthetic preferences emerge from complex relationships among visual features. The findings prove
that single reference training effectively extracts interpretable aesthetic properties from embedding spaces
without explicit labeling. Our results suggest that highly preferred products contain multiple aesthetic
preference-related properties, and deep learning models can successfully extract features corresponding to
these properties. This approach provides an alternative aesthetic assessment from labor-intensive individual
evaluation to efficient similarity-based inference, offering a methodology with reduced data requirements
for product design evaluation and enabling evaluation of new designs.

INDEX TERMS design evaluation, design engineering, aesthetics, deep learning, product design

I. INTRODUCTION

A. AESTHETICS IN PRODUCT DESIGN AND CURRENT
EVALUATION METHODS

A good product is usually defined as one that includes a suffi-
cient level of technology to satisfy consumers and a visually
pleasing exterior design. Products that meet these elements
influence consumers’ purchasing decisions. As the pace of
technological advancement has accelerated, the technological
level of many products encountered in daily life has become
standardized, contributing to a wider range of choices for
consumers regarding good products [1].

As the technological differences between products gradu-

ally decrease, it becomes increasingly important to differenti-
ate products in aspects other than technology [2]. Hekkert [3]
emphasized aesthetic appeal as one of these differentiating
factors, and Raghubir & Greenleaf [4] empirically confirmed
that the proportion of product packaging affects consumer
cognition, preference, and purchase intention.

The theoretical foundations of aesthetic preference re-
search include Berlyne’s [5] inverted U-shaped model and
Loewy’s [6] M.A.Y.A (Most Advanced Yet Acceptable) prin-
ciple. Berlyne explored the relationship between complexity,
novelty, uncertainty of visual stimuli and hedonic responses,
while Loewy suggested that the balance between innovation
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and familiarity is important for product success. Based on
these models, Thurgood et al. [7] empirically verified the
interaction effect of typicality and novelty in product design,
and Hung & Chen [8] experimentally demonstrated the im-
pact of various dimensions of novelty on aesthetic prefer-
ence in chair designs. Other researchers have explored the
association between aesthetic preference and various product
properties such as complexity, harmony, unity, timeliness,
and novelty [3], [8]–[11]. Table 1 presents the dimensions of
product aesthetics as defined by Ellis [12] and Brunel [13].

While these theoretical frameworks provide a foundation
for understanding aesthetic properties, evaluating them in
practice remains challenging. Previous studies have explored
various approaches to measuring aesthetic preferences of
products. Subjective evaluation methods such as consumer
surveys and interviews have been widely used, including
efforts to conceptualize and measure the importance of visual
aesthetics in consumer decision-making [14]. To complement
these approaches, objective techniques like Eye-Tracking
have been introduced, enabling researchers to analyze vi-
sual attention through physical responses [15], [16]. Other
studies have attempted to derive product-related features by
mining consumer-generated content such as online reviews
[17]. More recently, Liu et al. [18] proposed an aesthetic
measurement approach that attempts to quantify design ele-
ments, while Lai et al. [19] presented a method incorporat-
ing heterogeneous data for evaluating product appearance.
However, gaze concentration does not necessarily indicate
aesthetic preference, and limitations still exist in quantita-
tively extracting visual properties and establishing a direct
connection between such properties and user preferences.

B. DEEP LEARNING APPROACH IN DESIGN EVALUATION
Deep learning is a methodology that effectively learns com-
plex relationships between inputs and outputs by accurately
allocating credit for learning performance across multiple
computational stages within artificial neural networks [20].
These computational stages generally consist of nonlinear
functions, enabling high-dimensional representation learning
and inference through deep neural network structures.

The advancement of deep learning technology has opened
new possibilities for product design evaluation. Krizhevsky
et al. [21] demonstrated the superior image classification
performance of CNNs, and Sharif Razavian et al. [22] proved
that features extracted from Feature Extraction models show
excellent performance in various recognition tasks. In the
field of product design evaluation, Wu et al. [23] developed
a model that predicts design award outcomes from product
images using DCNN, while Burnap et al. [24], [25] proposed
a model that predicts product aesthetic preferences based on
a large image dataset labeled with preference scores through
a human-machine hybrid approach. However, existing deep
learning approaches have mostly been limited to predicting
consumer preferences by training on numerous images or
predicting preference scores by labeling each product with
preference scores. This approach involves inputting a photo

(x) to predict a preference score (ŷ) and confirming the cor-
relation (r) with the actual preference score (y).

ŷ = f (x), r = Corr(y, ŷ) (1)

Rather than relying on existing approaches that require
extensive preference labeling and large training datasets, our
research explores an alternative framework based on single
reference training.While previous methods typically focus on
supervised learning with comprehensive aesthetic databases,
our approach examines visual similarity analysis combined
with aesthetic property extraction through principal compo-
nent analysis. This methodological difference leads to several
contributions to the field of aesthetic evaluation: First, we
explore a single reference training approach that reduces
the need for extensive preference labeling, which may help
decrease evaluation costs in certain contexts. Second, we
provide interpretable analysis of aesthetic properties through
principal component analysis of embedding vectors, examin-
ing how deep learning models capture aesthetic dimensions
such as novelty, harmony, dynamics, and complexity. Third,
we investigate whether visual similarity to highly preferred
products can predict aesthetic preferences across different
product categories. Finally, our approach offers potential ap-
plicability to new product evaluation with limited additional
training requirements.

II. METHODOLOGY
To investigate the relationship between visual similarity and
aesthetic preference through single reference training, we
developed a comprehensive experimental framework. Our ap-
proach encompasses stimuli selection, participant evaluation,
deep learning model development, and similarity measure-
ment techniques.

A. OUR APPROACH
This research departs from conventional deep learning ap-
proaches by training models using only a single product with
the highest preference rating. Our methodology investigates
whether visual similarity to this reference product correlates
with aesthetic preference, and when significant relationships
are found, we analyze the embedding vectors to identify
aesthetically relevant properties such as novelty, harmony,
dynamics, and complexity. Therefore, when visual similarity
is expressed as SModel(j, ref) and aesthetic preference as P(j),
the relationship between these two factors can be mathemat-
ically represented as follows:

P(j) = αref × SModel(j, ref) + βref, j ∈ {1, 2, . . . , 30} (2)

where αref is the correlation coefficient representing the
strength of the relationship between visual similarity and
aesthetic preference, and βref is the intercept term of the linear
regression model.
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TABLE 1. Dimensions of product aesthetics [12], [13]

Properties Content

Simplicity/Complexity The subjective difficulty in evaluating the stimulus due to the number of visual parts, and the degree of
differentiation of these different parts.

Harmony The similarity or concordance among the various parts of a product’s visual design, with respect to elements like
shape, size, and color. It can also refer to the degree to which the stimulus fits with its surroundings.

Balance The sense of equilibrium can be influenced by the shape and relative locations of the visual design, the apparent
spatial depth of the design elements and the degree of isolation of the parts of the design.

Unity Degree of oneness of the design, i.e. the degree to which all the elements of the stimulus get combined to create
a whole.

Dynamics The degree to which there exists a perception of motion and tension in the design of the stimulus.

Timeliness/Style The subjective perception of the extent to which the design represents current fashionable trends vs. traditional,
old-fashioned properties. It is based on the recurrent features of the design.

Novelty Perception that the product design and aesthetics are new to the world. That they constitute a new experience for
the focal consumer.

Gestalt The integrated aesthetic evaluation. The evaluation of the product as a whole, without a necessary analysis of
each subpart. The whole and the sum of the subparts may be different.

B. RESEARCH PROCESS
This research employs the following approach to explore the
relationship between aesthetic preference for products and
similarity:

1) Selection of experimental stimuli and collection of
data: Home audio speakers were selected as experi-
mental stimuli, and data was collected through partic-
ipants’ evaluations of aesthetic preference and visual
properties. Electronic products are particularly suitable
for this study’s purpose as they represent a product
category where aesthetic plays an important role in
purchase decisions [26].

2) Construction of various deep learning models:
Based on aesthetic preference evaluation results, the
most preferred product was identified and used as
a reference to build various deep learning mod-
els. Four different methodological approaches—Pre-
trained CNN, Auto-encoder, Siamese Network, and
Triplet Network—were utilized to compare the effects
of feature learning and similarity measurement.

3) Similarity measurement and comparative analysis:
The trained deep learning models were used to mea-
sure the similarity between the reference product and
the remaining products, and these measurements were
comparatively analyzed with aesthetic preference eval-
uation results. In particular, this study explores whether
the features of a single reference product alone can
predict the aesthetic preference of other products.

4) Properties analysis: For models where a relation-
ship between similarity and preference was confirmed,
deeper analysis was conducted to explore which prop-
erties influence aesthetic preference. This helps to un-
derstand how property dimensions like novelty is re-
lated to the features learned by the model.

This approach is an attempt to connect the subjectivity and
objectivity of aesthetic evaluation, presenting a new evalua-
tion methodology utilizing artificial intelligence technology

in the field of product design. It may open the possibility
of predicting the aesthetic preference of other products using
only a few highly preferred products, which could present a
new quantitative approach to product design evaluation and
development processes.

C. STIMULI
Thirty speakers were selected for the survey. Each speaker
was chosen from different brands (companies), and products
with various design configurations were selected through Fo-
cus Group Interview (FGI). The selected products are shown
in Table 2.
A survey was conducted on aesthetic preference for each of

the 30 speakers using a Likert scale from 1 to 7. Additionally,
according to Berlyne’s [5] theory, one of the prominent theo-
ries on aesthetic preference and visual stimulation mentioned
above, participants were also asked to rate novelty from 1 to 7.
The novelty scores will be used for correlation analysis with
embedding vectors later in the study.

D. DESIGNER VS. NON-DESIGNERS AND AESTHETICS -
NOVELTY
A total of 44 answers (16 males & 28 females; age range:
20–30s) from Hongik University were collected. The sample
consisted of 34 design majors and 10 non-design majors.
First, the study examined whether there were differences in
the standard for judging aesthetic preference between design
majors and non-design majors.
A t-test was conducted on the differences between the

preference scores of design majors and non-design majors
for each product. The analysis results for aesthetic preference
scores were t-statistic = -0.04, p = 0.9657, and similarly, the
analysis results for novelty scores were t-statistic = -1.44,
p-value = 0.1514. Accordingly, confirming that there was
no difference in responses between design majors and non-
design majors, and the response data from all participants
regardless of major was used in subsequent research. The
survey data are shown in Tables 3, 4, and 5. Table 3 presents
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TABLE 2. Images of selected speakers

No. Image No. Image No. Image

1 11 21

2 12 22

3 13 23

4 14 24

5 15 25

6 16 26

7 17 27

8 18 28

9 19 29

10 20 30

the comparison of mean scores between design majors and
non-design majors for both aesthetic preference and novelty
ratings, along with t-test statistics confirming no significant
differences between groups. Table 4 displays the descriptive
statistics for aesthetic preference scores across all 30 prod-
ucts, includingmean, variance, and standard deviation values.
Products 5 and 13 achieved the highest preference scores
and were selected as reference products for subsequent deep
learning model training. Table 5 presents the corresponding
novelty evaluation results for each product, which will be
used for correlation analysis with embedding vectors in later
sections of the study.

Additionally, as participants were also asked to provide
novelty scores for each speaker, the study aimed to determine
whether the product category follows the inverted U-shaped
model, showing a quadratic relationship with novelty. If this
relationship is significant and if a meaningful correlation be-
tween similarity and preference is confirmed, it would imply
that the features extracted by the deep learning models may
be related to elements that determine novelty. Conversely, if
there is no significant relationship between novelty and aes-
thetic preference, it suggests the possibility that the properties
related to aesthetic preference for speakers and such product
features may not be limited to novelty alone.

Linear, quadratic, and cubic polynomial relationship analy-
ses were conducted based on aesthetic preference and novelty
scores, with results shown in Table 6. The evaluation metrics
used are: R2 (coefficient of determination) measuring the
proportion of variance explained by the model, MSE (Mean

FIGURE 1. Relationship between novelty and aesthetic preference

Squared Error) representing the average squared differences
between predicted and actual values, and MAE (Mean Ab-
solute Error) indicating the average absolute differences be-
tween predictions and observations. No significant relation-
ships were derived from any of the models. However, com-
pared to the linear model, the quadratic model showed an im-
provement in R2 from 0.0088 to 0.0701 and a 6.18% decrease
in MSE, while comparing the quadratic and cubic models
showed only a 4.14% increase in R2 and a 0.31% decrease
in MSE. This indicates that the quadratic model is the most
suitable explanatory model. An exploration of why Berlyne’s
inverted U-shaped model did not show explanatory power for
these products will be addressed shortly after. Figure 1 shows
the relationship between novelty and aesthetic preference.

E. CREATING DEEP LEARNING MODELS
The survey results showed that products #5 and #13 had the
highest preference scores at 5.43 points (var = 2.02) and
5.09 points (var = 1.95) respectively. To account for cross-
validation between models and assuming that different visual
elements from the two products’ features could influence
aesthetic preference, training was conducted not only with
product #5 (ranked first in aesthetic preference) but also with
product #13 (ranked second) separately.
All product images were preprocessed using consistent

procedures to ensure reproducibility across different model
architectures. Images were resized to 224 x 224 pixels using
TensorFlow’s load_img function with target_size parameter,
and converted to arrays using img_to_array [29]. Pixel values
were normalized to the range [0,1] by dividing by 255. No
data augmentation techniques were applied to preserve the
authentic visual characteristics essential for aesthetic evalua-
tion.
We implemented and compared four deep learning-based
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TABLE 3. Survey Evaluation

Design major mean Non-design major mean t-statistic p-value

Aesthetic preference 3.90 3.90 -0.04 0.9657

Novelty 3.75 3.93 -1.44 0.1514

TABLE 4. Scores of aesthetic preferences by product

No. Mean Var Std dev No. Mean Var Std dev

1 4.11 2.38 1.54 16 3.82 2.38 1.54

2 3.50 2.53 1.59 17 4.02 2.95 1.72

3 3.57 2.34 1.53 18 3.50 2.44 1.56

4 2.86 2.12 1.46 19 4.98 2.12 1.45

5a 5.43 2.02 1.42 20 4.59 1.92 1.39

6 4.55 2.16 1.47 21 3.02 2.67 1.64

7 4.61 2.99 1.73 22 2.84 2.46 1.57

8 3.73 2.76 1.66 23 2.84 2.65 1.63

9 4.09 3.57 1.89 24 3.45 3.42 1.85

10 4.14 1.98 1.41 25 3.32 1.94 1.39

11 3.23 2.88 1.70 26 4.00 2.05 1.43

12 4.48 1.88 1.37 27 4.34 2.70 1.64

13b 5.09 1.95 1.39 28 4.30 3.28 1.81

14 2.77 2.41 1.55 29 3.14 2.77 1.66

15 4.39 2.43 1.56 30 4.18 3.04 1.74
a Product with highest preference score
b Product with second highest preference score

TABLE 5. Scores of novelty by product

No. Mean Var Std dev No. Mean Var Std dev

1 3.29 2.61 1.62 16 5.02 1.33 1.15

2 2.41 2.15 1.47 17 4.95 2.23 1.49

3 3.68 2.18 1.47 18 5.16 2.65 1.63

4 3.70 2.68 1.64 19 3.07 1.88 1.37

5 4.23 1.71 1.31 20 3.14 2.03 1.42

6 2.50 2.91 1.70 21 6.18 1.64 1.28

7 5.59 1.16 1.06 22 3.09 3.43 1.85

8 4.98 3.28 1.81 23 5.57 1.88 1.37

9 4.91 2.88 1.70 24 5.23 2.60 1.61

10 3.50 2.07 1.44 25 3.57 1.83 1.35

11 1.34 0.46 0.68 26 2.80 1.33 1.15

12 3.52 2.12 1.45 27 2.66 1.49 1.22

13 5.89 0.85 0.92 28 5.16 2.37 1.54

14 2.18 2.48 1.57 29 1.32 0.36 0.60

15 1.82 1.18 1.08 30 3.30 1.93 1.39

TABLE 6. Model Evaluation

R2 MSE MAE

Linear 0.0088 0.492 0.60

Quadratic 0.0701 0.462 0.549

Cubic 0.0730 0.460 0.544

approaches for measuring image similarity. Since this re-

search prioritizes the exploration of relationships between
aesthetic preference and visual properties over the develop-
ment of highly robust models for reference products, both the
choice of deep learning architectures and hyperparameter set-
tings were based on researcher discretion rather than system-
atic optimization or rigorous selection criteria. As the primary
objective is to investigate whether meaningful relationships
exist between these factors, the focus remains on identifying
potential correlations rather than achieving optimal model
performance. As stated previously, no separate data such as
preference scores were labeled, and only the products them-
selves were trained. The theoretical background and operat-
ing principles of each model are as follows:

1) Pre-trained CNN
The Pre-trained CNN model utilizes pre-trained Convolu-
tional Neural Networks (CNN) to extract feature repre-
sentations from images without additional training. This
study adopted the ResNet50 architecture pre-trained on
the ImageNet dataset [27]. The ResNet50 model consists
of 50 layers with residual connections, configured with
weights=’imagenet’, include_top=False, and pooling=’avg’
parameters. The final classification layer was removed, and
the global average pooling layer output was used directly,
generating 2048-dimensional feature vectors for each input
image. Visual similarity between images is quantified by
measuring the cosine similarity between these extracted fea-
ture vectors.

2) Auto-Encoder
The Auto-encoder is an unsupervised learning neural net-
work consisting of an encoder and a decoder architecture.
The encoder follows a convolutional structure with three
encoding blocks: Conv2D(32, 3x3) - MaxPooling2D(2x2)
- Conv2D(64, 3x3) - MaxPooling2D(2x2) - Conv2D(128,
3x3) - MaxPooling2D(2x2), reducing the 224x224x3 input
to a compressed latent representation. The decoder mirrors
this structure using transposed convolutions: Conv2D(128,
3x3) - UpSampling2D(2x2) - Conv2D(64, 3x3) - UpSam-
pling2D(2x2) - Conv2D(32, 3x3) - UpSampling2D(2x2) -
Conv2D(3, 3x3, activation=’sigmoid’), reconstructing the
original image dimensions. All convolutional layers use
ReLU activation except the final output layer which uses
sigmoid activation to ensure pixel values remain in the [0,1]
range.

3) Siamese Network
The Siamese Network is designed to directly learn simi-
larity relationships between two images through a twin ar-
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chitecture consisting of two parallel neural networks that
share identical weights. Each branch utilizes a ResNet50
backbone (without pre-trained weights, trainable=False) fol-
lowed by GlobalAveragePooling2D, Dense(1024, activa-
tion=’relu’), and Dense(128, activation=’relu’) layers, pro-
ducing 128-dimensional feature vectors. The L1 distance
(Manhattan distance) between these feature vectors is com-
puted and fed into a final Dense(1, activation=’sigmoid’)
layer for binary similarity classification. The network is
trained using binary cross-entropy loss to distinguish between
similar (same category) and dissimilar (different category)
image pairs.

4) Triplet Network
The Triplet Network employs a metric learning approach that
learns from triplets of images: an anchor image, a positive
image (from the same category as the anchor), and a neg-
ative image (from a different category). The network archi-
tecture consists of three identical branches sharing weights,
each comprising a ResNet50 backbone (trainable=False)
followed by GlobalAveragePooling2D, Dense(1024, activa-
tion=’relu’), Dense(512, activation=’relu’), and Dense(128)
layers. The final 128-dimensional embeddings are L2-
normalized to unit length to ensure stable distance compu-
tations. The triplet loss function with margin α = 0.3 mini-
mizes the distance between anchor-positive pairs while max-
imizing the distance between anchor-negative pairs, creating
a semantically meaningful embedding space where visually
similar products cluster together.

F. IMAGE TRAINING
For products #5 and #13, the four learning approaches de-
scribed above were implemented, creating a total of 10 mod-
els. Approximately 35 images were used for each, with ex-
amples shown in Table 7.

Images for training were carefully curated to ensure con-
sistent quality and minimize noise that could interfere with
aesthetic feature learning. Images were selected from official
product websites and professional studio photography, prior-
itizing clean backgrounds with minimal visual distractions.
Images were collected from different angles and distances to
capture comprehensive visual characteristics while maintain-
ing authentic product representation. No data augmentation
techniques were applied to preserve the genuine aesthetic
properties essential for preference evaluation. Model training
employed the Adam optimizer with a learning rate of 0.0001
for all trainable models and validation splits of 0.2 [31].

Training was conducted for each model under the condi-
tions shown in Table 8. The Triplet Network used batch 16,
epoch 25; the Siamese Network used batch 16, epoch 20; the
Auto-encoder used batch 16, epoch 50 [35]. Throughout all
training processes, early stopping was set to prevent model
overfitting, configured to stop training if there was no loss
improvement greater than 0.001 during a specified patience
period [36]. For Pre-trained CNN, there were no separate
batch and epoch settings as it utilized an existing learning

TABLE 7. Example images used for training

Image 1 Image 2 Image 3 Image 4 Image 5

No. 5

No. 13

TABLE 8. Batch and epochs for each model

Model Batch Epoch

Triplet Network 16 25

Siamese Network 16 20

Auto-encoder 16 50

Pre-trained CNN - -

TABLE 9. Stopped epoch and val loss of No.5 training model

Model Epoch Val loss

Triplet Network 6/25 < 0.001

Siamese Network 15/20 0.001

Auto-encoder 37/50 0.008

Pre-trained CNN - -

TABLE 10. Stopped epoch and val loss of No.13 training model

Model Epoch Val loss

Triplet Network 6/25 < 0.001

Siamese Network 15/20 0.001

Auto-encoder 46/50 0.005

Pre-trained CNN - -

architecture [22], [37]. In cases where negative images were
needed, images from the 29 products among the 30 products
(excluding the product being trained) were utilized. The end-
ing epoch for each training and the measured loss are shown
in Tables 9 and 10.

G. SIMILARITIES OF EACH MODEL
After the models were generated, the similarity between
model #5 and the remaining products, as well as the simi-
larity between model #13 and the remaining products, was
examined. The results are shown in Tables 11 and 12. For
this examination, 15 images of each product, including the
datasets of products #5 and #13 which would serve as the
maximum similarity reference points, were tested against
each deep learning model.
Similarity scores were calculated using model-specific

methods: cosine similarity between feature vectors for Pre-
trained CNN, inverse reconstruction error for Auto-encoder,
inverse L1 distance for Siamese Network, and inverse Eu-
clidean distance in embedding space for Triplet Network.
All similarity values were converted to percentage scores (0-
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100%).

III. RESULTS
We present our experimental findings in three main areas:
correlation analyses between image similarity and aesthetic
preference, principal component analysis of embedding vec-
tors, and exploration of relationships with various aesthetic
properties.

A. CORRELATION BETWEEN IMAGE SIMILARITY AND
AESTHETIC PREFERENCE
These similarities were used to analyze the correlation be-
tween preference scores from the survey and similarity
through Pearson and cosine similarity, with results shown
in Tables 13 and 14. Since product similarity ranges from
0 to 100% and preference scores range from 1 to 7, cosine
similarity tests were conducted to analyze the directionality
of each data vector [39]. Permutation tests were done with
1000 iterations.

For the model trained on product #5, the Triplet Network
model showed a significant positive correlation with r =
0.448, p = 0.013, and the cosine similarity yielded a result
of cos(θ) = 0.983, p = 0.012.

P5(j) = α5 × S5Triplet(j, 5) + β5, j ∈ {1, 2, . . . , 30} (3)

where α5 ≈ 0.448 (p = 0.013), α5 > 0
The correlation coefficient α5 was obtained from Pearson

correlation analysis between the Triplet Network similarity
scores and aesthetic preference ratings for all 30 products,
while β5 represents the intercept term.
For the model trained on product #13, the Pre-trained CNN

model showed a significant correlation with r = 0.478, p =
0.008, and the cosine similarity yielded a result of cos(θ) =
0.988, p = 0.002.

P13(j) = α13× S13F.E(j, 13)+β13, j ∈ {1, 2, . . . , 30} (4)

where α13 ≈ 0.478 (p = 0.008), α13 > 0
Similarly, α13 was derived from Pearson correlation anal-

ysis between the Pre-trained CNN similarity scores and aes-
thetic preference ratings, with β13 as the intercept term.
Therefore, for product #5 in the Triplet Network model and
for product #13 in the Pre-trained CNN model, we suc-
cessfully identified significant linear relationships between
visual similarity to the reference products and the aesthetic
preference scores of the remaining products. Figures 2 and 3
show the correlation plots.

After this, assuming that products with high variance in
aesthetic preference or novelty scores show polarization due
to respondents’ personal preferences, a reanalysis was con-
ducted after excluding 9 products (number 6, 7, 8, 9, 17,
22, 24, 28, and 30) that had variance of 2.9 or higher in
aesthetic preference and novelty scores, defined as J ′ =
J \ {6, 7, 8, 9, 17, 22, 24, 28, 30}. The results are shown in

FIGURE 2. Similarity (%) and aesthetic preference for No.5 Triplet Network

FIGURE 3. Similarity (%) and aesthetic preference for No.13 Pre-trained
CNN

Tables 15 and 16. As can be seen in the table, it was discov-
ered that the correlation coefficients with aesthetic preference
increased and p-values decreased across themodels. Figures 4
and 5 show the filtered correlation plots.
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TABLE 11. Similarity results No.5 models vs. 29 speakers (%)

No. Triplet Network Siamese Network Auto-encoder Pre-trained CNN

5 75.88 95.22 75.65 81.32

1 41.00 87.74 66.71 55.57

2 47.63 93.49 72.71 69.30

3 42.52 90.31 45.28 65.35

4 41.30 91.90 71.70 65.33

6 39.80 89.07 30.21 58.18

7 39.19 89.68 70.12 57.03

8 41.15 91.53 62.84 61.84

9 41.36 91.63 55.95 63.32

10 46.98 88.00 30.01 63.90

11 44.33 89.04 72.57 57.08

12 43.46 87.26 76.99 58.25

13 57.72 91.94 76.79 66.86

14 35.45 86.11 39.91 50.19

15 38.96 90.05 68.15 59.14

16 42.61 92.39 46.00 63.03

17 39.12 89.00 74.96 54.93

18 38.56 89.84 58.32 59.70

19 39.20 87.73 65.83 59.09

20 43.55 89.92 78.04 64.82

21 38.70 87.70 80.36 57.26

22 44.23 88.94 42.55 57.34

23 39.00 90.78 73.31 57.61

24 43.00 92.46 80.64 64.72

25 48.37 92.62 66.12 70.64

26 55.37 92.96 62.08 69.10

27 44.50 88.20 62.49 60.53

28 34.12 87.09 0.00 50.44

29 38.91 87.56 55.26 55.15

30 53.59 92.29 60.77 69.11

J ′ = J \ {6, 7, 8, 9, 17, 22, 24, 28, 30} (5)

∀j ∈ J ′ : P(j) = α∗
5 × S5Triplet(j, 5) + β5

α∗
5 ≈ 0.597 (p = 0.004) (6)

∀j ∈ J ′ : P(j) = α∗
13 × S13F.E(j, 13) + β13

α∗
13 ≈ 0.738 (p < 0.001) (7)

These equations demonstrate the substantial improvement
in correlation strength when high-variance products are ex-
cluded from the analysis. Equation 5 defines the filtered
dataset by removing products with high response variability,
while Equations 6 and 7 show the resulting enhanced corre-
lations. The improved correlation coefficients (α∗

5 = 0.597
and α∗

13 = 0.738) indicate that products with polarized
aesthetic preferences may introduce noise in the similarity-
preference relationship, and filtering these products reveals
stronger underlying patterns between visual similarity and
aesthetic preference.

B. PCAS OF MODELS’ EMBEDDING VECTORS
While a positive correlation between image similarity de-
termined by deep learning models and aesthetic preference
for each product was identified, questions remain as to why
different models explained this relationship for products #5
and #13. To investigate this, the correlation between novelty
scores and deep learning models was analyzed to determine
whether each model identifies novelty or if other proper-
ties exist. Embedding vectors for the similarity of product
#5’s Triplet Network model and product #13’s Pre-trained
CNNmodel, which had significant correlations with aesthetic
preference, were extracted and reduced to 10 dimensions
through principal component analysis [40], [41]. PCA is
a dimensionality reduction technique that transforms high-
dimensional data into a lower-dimensional space while pre-
serving the maximum variance, allowing identification of
the most important patterns in the data. Tables 17 and 18
show the PCA results. Principal component analysis was per-
formed on mean embedding vectors (30 products Ö embed-
ding dimensions), reducing dimensionality to 10 components.
The "For each" column shows the explained variance ratio
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TABLE 12. Similarity results No.13 models vs. 29 speakers (%)

No. Triplet Network Siamese Network Auto-encoder Pre-trained CNN

13 76.14 96.21 80.63 79.55

1 41.20 87.86 60.71 63.60

2 36.57 91.54 65.59 59.90

3 38.35 89.95 34.33 63.43

4 32.47 90.33 67.47 59.78

5 45.72 94.38 76.39 68.24

6 37.76 89.33 12.55 61.07

7 31.42 89.90 65.45 55.06

8 33.68 90.26 57.33 55.10

9 46.74 94.73 57.06 66.28

10 35.86 87.32 14.16 61.16

11 39.48 88.87 69.34 61.18

12 42.86 88.12 73.82 67.73

14 36.62 86.56 43.61 57.43

15 36.01 90.38 65.27 62.68

16 54.28 95.79 46.58 69.36

17 33.54 88.42 75.84 54.32

18 34.08 88.71 53.41 55.40

19 35.91 89.83 64.85 65.89

20 37.29 90.50 75.04 67.82

21 36.47 87.60 79.63 60.10

22 43.65 90.33 47.90 65.11

23 33.23 89.83 71.32 54.10

24 39.70 92.19 78.21 58.07

25 41.30 91.88 63.35 64.46

26 38.58 90.69 52.69 63.93

27 33.73 88.32 59.21 66.66

28 35.15 87.68 0.00 56.65

29 39.80 89.70 52.15 63.57

30 38.27 91.83 54.91 69.92

TABLE 13. No.5 models’ analysis metrics

Model Pearson Cosine Similarity

Triplet Networka r = 0.448, p = 0.013 cos(θ) = 0.983, p = 0.012

Siamese Network r = 0.136, p = 0.475 cos(θ) = 0.984, p = 0.224

Auto-encoder r = −0.001, p = 0.997 cos(θ) = 0.938, p = 0.494

Pre-trained CNN r = 0.319, p = 0.086 cos(θ) = 0.985, p = 0.047
a Model with p < 0.05

TABLE 14. No.13 models’ analysis metrics

Model Pearson Cosine Similarity

Triplet Network r = 0.309, p = 0.097 cos(θ) = 0.974, p = 0.050

Siamese Network r = 0.300, p = 0.107 cos(θ) = 0.985, p = 0.057

Auto-encoder r = 0.018, p = 0.923 cos(θ) = 0.932, p = 0.486

Pre-trained CNNa r = 0.478, p = 0.008 cos(θ) = 0.988, p = 0.002
a Model with p < 0.05

for individual components, while "Cumulative" shows the
cumulative explained variance. The structure of the entire
data matrix before reduction consisted of rows representing

individual product categories (1, 2, ..., 30), composed of the
mean values of embedding vectors from 15 images belonging
to each category. The columns represent each dimension of
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TABLE 15. No.5 models’ analysis metrics without products var > 2.9

Model Pearson Cosine Similarity

Triplet Networka r = 0.597, p = 0.004 cos(θ) = 0.985, p = 0.002

Siamese Network r = 0.202, p = 0.381 cos(θ) = 0.982, p = 0.188

Auto-encoder r = 0.218, p = 0.342 cos(θ) = 0.969, p = 0.182

Pre-trained CNNa r = 0.456, p = 0.038 cos(θ) = 0.985, p = 0.014
a Model with p < 0.05

TABLE 16. No.13 models’ analysis metrics without products var > 2.9

Model Pearson Cosine Similarity

Triplet Networka r = 0.444, p = 0.044 cos(θ) = 0.975, p = 0.027

Siamese Network r = 0.414, p = 0.062 cos(θ) = 0.983, p = 0.033

Auto-encoder r = 0.212, p = 0.356 cos(θ) = 0.960, p = 0.177

Pre-trained CNNa r = 0.738, p < 0.001 cos(θ) = 0.990, p < 0.001
a Model with p < 0.05

FIGURE 4. Similarity (%) and aesthetic preference (scores) without
products with var > 2.9 for No.5

the embedding space. Therefore, the overall structure of the
data matrix consists of 30 rows and as many columns as the
embedding dimensions for each model.

Based on the principal component analysis results, specific
principal components showed significant correlations with
the absolute value of differences in product novelty scores.
The correlation coefficients in Tables 19 and 20 were cal-
culated using Pearson correlation analysis between principal
component values and the absolute novelty score differences
from the reference product. A negative correlation between
the absolute value of novelty score differences and principal
components Corr(|N (j)−N (ref)|,PC i

ref(j)) < 0 suggests that

FIGURE 5. Similarity (%) and aesthetic preference (scores) without
products with var > 2.9 for No.13

the principal component is related to features that define the
novelty of the reference product. Here, PC i

ref represents the
i-th principal component value of the reference product (#5
or #13) model, N (j) is the novelty score of the j-th product,
N (ref) is the novelty score of the reference product, |N (j) −
N (ref)| is the absolute value of the difference between the two
scores, and Corr refers to the Pearson correlation coefficient.
As shown in Tables 19 and 20, the analysis revealed that PC7

5

from product #5 showed a significant negative correlation
with novelty score differences (r = −0.407, p = 0.029),
while PC2

13 from product #13 showed a negative correlation
(r = −0.619, p < 0.001).
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TABLE 17. No.5 Triplet Network PCA

Component For each Cumulative

PC1 0.269 0.269

PC2 0.169 0.438

PC3 0.090 0.528

PC4 0.085 0.613

PC5 0.063 0.676

PC6 0.040 0.716

PC7 0.035 0.751

PC8 0.033 0.784

PC9 0.032 0.816

PC10 0.024 0.840

TABLE 18. No.13 Pre-trained CNN PCA

Component For each Cumulative

PC1 0.169 0.169

PC2 0.139 0.308

PC3 0.104 0.412

PC4 0.096 0.508

PC5 0.058 0.566

PC6 0.049 0.615

PC7 0.043 0.658

PC8 0.041 0.699

PC9 0.032 0.731

PC10 0.030 0.761

TABLE 19. Correlation between No.5 Triplet Network’s PCs and absolute
novelty difference

Component Correlation p-value

PC1 -0.243 0.204

PC2 -0.335 0.076

PC3 -0.157 0.415

PC4 -0.012 0.951

PC5 -0.127 0.511

PC6 -0.030 0.878

PC7a -0.407 0.029

PC8 -0.026 0.892

PC9 -0.019 0.922

PC10 0.082 0.674
a Principal component with p < 0.05

These results indicate that features constituting novelty in
each product can be explained by certain principal compo-
nents. It suggests that other principal components may reflect
properties other than novelty.

Not only the absolute value of novelty differences but also
the correlation with novelty scores themselves was examined
(Tables 21 and 22). Product #13 was evaluated as having a
high novelty score among the entire product group, and just as
PC2

13 in the model showed a strong negative correlation with
the absolute value of novelty score differences, it also showed
a significant positive correlation with the novelty score itself

TABLE 20. Correlation between No.13 Pre-trained CNN’s PCs and
absolute novelty difference

Component Correlation p-value

PC1 -0.150 0.436

PC2a -0.619 < 0.001

PC3 -0.241 0.209

PC4 -0.201 0.295

PC5 -0.147 0.447

PC6 0.144 0.455

PC7 -0.236 0.218

PC8 0.089 0.647

PC9 -0.123 0.524

PC10 0.134 0.490
a Principal component with p < 0.05

FIGURE 6. No.13’s Pre-trained CNN’s PC2
13 and novelty scores

(r = 0.533, p = 0.002). This suggests that PC2
13 captures

visual elements that determine novelty as generally perceived
regardless of the product. In other words, products with high
PC2

13 values are evaluated as having high overall novelty and
can be considered to share similar novelty properties with
product #13, which showed a high novelty score. Figure 6
shows the relationship between No.13’s Pre-trained CNN’s
PC2

13 and novelty scores.
While in the model of product #5, which showed a rel-

atively lower novelty score than product #13, PC7
5 showed

a significant negative correlation with the absolute value of
novelty score differences, it did not show a significant corre-
lation with the novelty score itself. These results suggest that
PC7

5 is a principal component that reflects novelty specific to
product #5 rather than general novelty. Instead, PC2

5 and PC4
5

showed positive correlations with novelty scores (r = 0.499,
p = 0.005; r = 0.461, p = 0.010), suggesting that
PC2

5 and PC4
5 reflect features associated with novelty that

have explanatory power in other products beyond product #5.
Figures 7 and 8 show these relationships.

This difference suggests that product #13, which received a
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FIGURE 7. No.5’s Triplet Network’s PC2
5 and novelty scores

FIGURE 8. No.5’s Triplet Network’s PC4
5 and novelty scores

high novelty score (mean = 5.89), strongly embodies univer-
sally recognized novelty elements, while product #5, which
showed a relatively lower novelty score (mean = 4.23), ap-
pears to have its novelty-reflecting principal components sep-
arated into several branches.

In addition, the correlation between each of the 10 principal
components and aesthetic preference was also analyzed, with
results shown in Tables 23 and 24. Pearson correlation co-
efficients were computed between each principal component
value and aesthetic preference scores across all products.
While the comprehensive image similarity yielded significant
correlations with aesthetic preference, only significant nega-
tive correlations were found with individual principal compo-
nents, with no positive correlations emerging. This suggests
that the relationship between principal components and aes-
thetic preference may be non-linear or follow a polynomial
relationship, and it can be inferred that the cognitive process
by which people determine aesthetic preference involves a

TABLE 21. Correlation between No.5 Triplet Network’s PCs and novelty
scores

Component Correlation p-value

PC1 0.021 0.915

PC2a 0.508 0.005

PC3 -0.046 0.813

PC4a 0.464 0.011

PC5 0.155 0.422

PC6 0.202 0.294

PC7 0.052 0.788

PC8 -0.041 0.832

PC9 0.107 0.579

PC10 -0.215 0.262
a Principal component with p < 0.05

TABLE 22. Correlation between No.13 Pre-trained CNN’s PCs and novelty
scores

Component Correlation p-value

PC1 0.132 0.494

PC2a 0.609 < 0.001

PC3 0.296 0.119

PC4 0.226 0.238

PC5 0.116 0.549

PC6 -0.148 0.445

PC7 0.220 0.251

PC8 -0.084 0.666

PC9 0.141 0.465

PC10 -0.138 0.476
a Principal component with p < 0.05

TABLE 23. Correlation between No.5 Triplet Network’s PCs and aesthetic
preference scores

Component Correlation p-value

PC1 0.312 0.094

PC2 -0.358 0.052

PC3 -0.128 0.501

PC4 0.255 0.175

PC5 -0.009 0.962

PC6 -0.087 0.647

PC7 0.149 0.433

PC8 0.272 0.146

PC9 0.253 0.178

PC10 -0.057 0.765

more complex process.

C. PCAS AND AESTHETIC PREFERENCE
Using the 10 principal components extracted earlier, we
analyzed polynomial regression models for their relation-
ship with preference scores. The individual results for each
model’s principal components are shown in Tables 25 and 26.
We also explored which interaction model of two principal

components best explains preference scores. In model #5, the
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TABLE 24. Correlation between No.13 Pre-trained CNN’s PCs and
aesthetic preference scores

Component Correlation p-value

PC1 0.094 0.621

PC2a -0.366 0.047

PC3 -0.052 0.783

PC4 -0.032 0.868

PC5 0.329 0.076

PC6a -0.444 0.014

PC7 -0.010 0.957

PC8 -0.135 0.476

PC9 -0.233 0.216

PC10 -0.149 0.433
a Principal component with p < 0.05

TABLE 25. Results for #5’s Triplet Network PC polynomial analysis

Component Quadratic R2 Cubic R2

PC1 0.214 0.223

PC2 0.168 0.202

PC3 0.029 0.031

PC4 0.104 0.162

PC5 0.046 0.064

PC6 0.018 0.023

PC7 0.038 0.061

PC8 0.074 0.127

PC9 0.098 0.203

PC10 0.050 0.067

TABLE 26. Results for #13’s Pre-trained CNN PC polynomial analysis

Component Quadratic R2 Cubic R2

PC1 0.041 0.049

PC2 0.142 0.144

PC3 0.068 0.089

PC4 0.012 0.051

PC5 0.110 0.136

PC6 0.272 0.365

PC7 0.015 0.017

PC8 0.033 0.046

PC9 0.133 0.154

PC10 0.052 0.055

interaction of PC1
5 and PC8

5 yielded R2 = 0.3719, while
in model #13, the interaction of PC2

13 and PC6
13 resulted in

R2 = 0.4065. While individual principal components did not
show clear relationships with preference, we observed that
interactions of multiple principal components substantially
increased explanatory power. Figures 9 and 10 show 3D
visualizations of these interaction models.

D. WHAT ABOUT OTHER PROPERTIES?
As we observed above, we were able to identify several prin-
cipal components of embedding vectors that correlate with

TABLE 27. Results for Interaction model

Model R2

#5 Triplet Network PC1
5 × PC8

5 0.3400

#13 Pre-trained CNN PC2
13 × PC6

13 0.4065

FIGURE 9. 3D Visualization of Interaction model of #5’s PC1
5 × PC8

5

FIGURE 10. 3D Visualization of Interaction model of #13’s PC2
13 × PC6

13

novelty. Building on this finding, we sought to explore rela-
tionships with additional properties beyond novelty, specifi-
cally those outlined in Table 1. From these properties, we se-
lected complexity, harmony, balance, unity, and dynamics for
further analysis. Following the same methodology used for
novelty assessment, we asked some of the same participants
(N = 15) to evaluate the identical set of 30 products on a 7-
point Likert scale for each of these five additional properties.
Using the same participants was to minimize unexpected
errors across evaluations. The mean scores for each property
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FIGURE 11. (a) #5’s properties: Harmony. (b) #5’s properties: Dynamics.

across all products are presented in Table 28. These scores
were obtained from 15 participants evaluating all 30 products
on a 7-point Likert scale for complexity, harmony, balance,
unity, and dynamics.

Based on the response data, we analyzed the correlations
between the 10 principal components and various properties
again. For the #5 Triplet Network, properties that showed
significant relationships (p < 0.05) with principal compo-
nents were PC1

5 - Harmony (r = 0.362, p = 0.049), PC2
5

- Dynamics (r = 0.555, p = 0.001), PC3
5 - Complexity

(r = 0.418, p = 0.021), PC4
5 - Balance (r = −0.440,

p = 0.015) and for the #13 Pre-trained CNN, they were
PC1

13 - Harmony (r = 0.374, p = 0.042), PC2
13 - Dynamics

(r = 0.649, p < 0.001), PC4
13 - Complexity (r = 0.557,

p = 0.001), PC9
13 - Unity (r = −0.374, p = 0.042). The

visualizations of these relationships are shown in Figures 11
through 14.

Following the examination of the polynomial relationship
between novelty and aesthetic preference scores as described
above, we conducted analogous polynomial analyses for the
five properties, examining linear, quadratic, and cubic rela-
tionships. For this analysis, we used response data from the

FIGURE 12. (a) #5’s properties: Complexity. (b) #5’s properties: Balance.

same 15 participants regarding aesthetic preference scores.
The analysis revealed that unity was the only property among
the five that demonstrated a statistically significant relation-
ship (p < 0.05) with aesthetic preference scores. The cor-
responding graph is presented in Figure 15. While the poly-
nomial relationship between unity and aesthetic preference
yielded significant results, given that only the correlation with
PC9

13 of #13 showed significance in relation to the principal
components, it appears somewhat challenging to regard unity
as having substantial explanatory power for overall aesthetic
preference.
Furthermore, as we confirmed that each property showed

similar response patterns, we analyzed the correlations be-
tween properties and visualized these relationships in a
heatmap as shown in Figure 16. The highest and signifi-
cant positive correlations were found between Complexity
- Dynamics (r = 0.762, p < 0.001) and Balance - Unity
(r = 0.707, p < 0.001). For negative correlations, the
strongest were Balance - Dynamics (r = −0.755, p < 0.001)
and Complexity - Balance (r = −0.717, p < 0.001). Here,
we can observe that dynamics and novelty were grouped into
the same PC, which is consistent with their high correla-
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TABLE 28. Mean scores of other properties by product

No. Comp Harm Bal Uni Dyna No. Comp Harm Bal Uni Dyna

1 1.27 4.00 5.53 5.73 1.67 16 5.27 3.60 3.47 3.87 4.27

2 2.27 4.60 5.93 5.87 2.40 17 3.20 4.80 4.73 4.87 4.47

3 4.00 5.07 5.13 4.60 2.60 18 4.87 4.53 4.73 5.93 4.60

4 3.60 4.20 5.00 4.40 4.07 19 2.93 4.27 5.07 4.80 2.27

5 3.33 5.60 4.93 5.47 2.80 20 2.33 4.20 4.67 4.33 1.93

6 4.13 4.47 5.53 4.27 2.60 21 6.53 3.13 2.73 4.13 6.13

7 2.87 4.93 4.73 4.60 3.73 22 5.53 2.13 3.60 2.53 3.93

8 3.20 3.80 3.53 3.87 4.67 23 5.20 3.47 3.80 3.60 4.93

9 5.13 4.33 4.80 5.00 4.87 24 1.93 4.53 4.20 4.87 4.40

10 3.00 4.60 5.13 4.20 2.53 25 3.53 4.27 4.67 4.80 3.07

11 3.40 3.93 5.13 5.53 3.13 26 1.67 4.27 5.20 5.07 1.73

12 5.40 3.73 3.47 3.67 3.40 27 2.27 4.47 5.27 5.07 2.40

13 4.87 4.53 4.73 5.93 4.60 28 5.47 4.4 4.4 5.07 2.4

14 2.93 4.27 5.07 4.80 2.27 29 2.47 3.8 4.93 4.47 2.67

15 2.33 4.20 4.67 4.33 1.93 30 2.00 4.53 5.07 4.93 2.07

FIGURE 13. (a) #13’s properties: Harmony. (b) #13’s properties: Dynamics.

tion, whereas none of the other properties were found to be
grouped within the same principal component.

FIGURE 14. (a) #13’s properties: Complexity. (b) #13’s properties: Unity.

The findings covered in this paper can be summarized and
visualized as shown in Figures 17 and 18. We’ve analyzed the
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FIGURE 15. Relationship between unity and aesthetic preference

FIGURE 16. Correlation matrix between properties

correlation between aesthetic preferences and visual similar-
ity, extracted image embedding vectors, reduced them to 10
dimensions through principal component analysis, and then
thoroughly examined their correlation with multiple visual
properties.

IV. CONCLUSION
Based on prior studies on aesthetic preferences and visual
properties, the present research employed deep learning to
quantitatively and comprehensively investigate the underly-
ing relationships. First, we examined preferences within the
product category of home audio speakers and found that
similar preference trends emerged regardless of participants’
academic background. Additionally, it was observed that aes-
thetic preferences did not necessarily follow the inverted-
U model, the reason for which was soon explored in PCAs
of models’ embedding vectors. Second, we developed four

distinct deep learning models for the most preferred product
and measured the similarity between this product and other
samples using the generated models. A linear relationship
between similarity and preference was then examined, and it
was found that this relationship became stronger when high-
variance products were excluded from the analysis. Subse-
quently, principal component analysis (PCA) was conducted
on the embedding vectors obtained from the deep learning
model. This analysis revealed which principal components
were associated with perceived novelty, indicating that the
deep learning models effectively extracted relevant features
related to novelty. However, no significant linear relation-
ships were found between individual principal components
and aesthetic preferences. Interaction models among multiple
principal components were analyzed to further explore this is-
sue. The findings revealed polynomial relationships between
these components and aesthetic preferences, suggesting that
such preferences are determined by complex interactions
among various elements rather than by any single factor
alone. Lastly, through principal component analysis of some
properties in Table 1 and embedding vectors, we were able to
discover what properties the features extracted by the model
incorporate besides novelty.

A. IMPLICATIONS
This research confirmed a correlation between similarity to
other products and aesthetic preference by extracting fea-
tures through a deep learning model trained on only one
product. This indicates that the most preferred product con-
tains multiple visual elements that influence aesthetic pref-
erence. In contrast to previous researches mentioned above,
this research is distinctive in that it trains a model based
on the most preferred product without labeling, and then
quantitatively evaluates visual elements affecting aesthetic
preference through similarity comparisons with other prod-
ucts. Although not shown in this study, heat maps can be
output during similarity assessment to visually identify areas
of low similarity within each product image. This allows for
identification of which parts should be modified in the design
process, which parts are related to preference, or which parts
are associated with properties.
Previous deep learning approaches to aesthetic evaluation

rely heavily on extensive labeling for supervised learning,
whereas our method requires minimal data without prefer-
ence labeling. While Wu et al. [23] and Burnap et al. [24]
focus on direct prediction through large labeled datasets,
our approach centers on extracting insights through PCA
analysis of the relationship between visual similarity and
user-provided aesthetic preference scores and visual property
ratings. This fundamental difference in methodology can be
summarized in Table 29. This comparison illustrates the dif-
ferent approaches to aesthetic evaluation, with our method
offering an alternative framework that trades predictive accu-
racy for reduced data requirements and interpretable aesthetic
property analysis.
Furthermore, we plan to validate this method through inte-
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FIGURE 17. Schematic Diagram of No. 5 Triplet Network Model

FIGURE 18. Schematic Diagram of No. 13 Pre-trained CNN Model

TABLE 29. Comparative Analysis of Aesthetic Evaluation Approaches

Aspect Wu et al. (2020) Burnap et al. (2021) Our Approach

Training Data Requirements Large dataset with award labels
for each product

203 labeled + 180,000 unlabeled
images

Single reference product (35 im-
ages, limited product diversity)

Labeling Requirements Extensive: Award status for each
product

Extensive: Consumer ratings
(7,308 evaluations)

Minimal: No preference labeling
required

Model Architecture Deep CNNs for direct prediction VAE-GAN hybrid (custom archi-
tecture)

Multiple approaches: Pre-trained
CNN, Siamese, Triplet, Autoen-
coder

Evaluation Methodology Award prediction accuracy Theme clinic validation + genera-
tive quality

Correlation analysis (depends on
reference product selection)

Scalability Limited by award data availability Limited by consumer evaluation
costs

Requires domain-specific valida-
tion for new categories

gration into actual design workflows. The proposed practical
implementation process would involve the following itera-
tive design cycle: (1) Product category selection and estab-
lishment of aesthetic preference benchmarks through user
evaluation of existing products for both aesthetic preference
and aesthetic properties; (2) Training deep learning models
on highly preferred reference products; (3) Initial design
concept development and rendering image extraction; (4) Vi-
sual similarity assessment and embedding vector analysis to

identify aesthetic properties and generate attention heatmaps
highlighting design elements; (5) Design refinement based
on identified deficiencies or improvement opportunities; and
(6) Iterative similarity assessment until design objectives are
achieved.

Additionally, the integration of this evaluation model with
generative AI systems presents promising opportunities. By
pairing generative models with our aesthetic assessment
framework, designers could specify desired similarity scores
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FIGURE 19. Design Process Based on the Methodology of This Research

and aesthetic properties as generation parameters, producing
design candidates that meet predetermined aesthetic criteria.
The resulting images could then serve as references for de-
sign application, enabling a systematic approach to aesthetic-
driven design development.

It should also be noted that the identified correlations do
not imply causation. There is no design evaluation method
that can be used in all cases reflecting individual tastes or
perspectives, and such a method is impossible [42]. This
approach demonstrates the potential to be used as one of
many design evaluation methods. The method proposed in
this study cannot be claimed as the optimal design evaluation
method. This research was conducted as an exploration of
a new design evaluation methodology. Rather than serving
as a standalone evaluation tool, it should be used in con-
junction with other well-established methods to provide a
more comprehensive understanding of design quality. It may
serve as a foundation for future studies exploring data-driven
approaches to design evaluation.

B. LIMITATIONS
While this research provides valuable insights into aesthetic
evaluation through deep learning, several limitations should
be acknowledged. The reliance on a single reference product
assumes a certain degree of universality in aesthetic prefer-
ence that may not hold across all design domains or cultural
contexts. Our approach inherently carries the aesthetic bias
embedded in the reference product selection process. When
the reference product represents a highly specialized or atyp-
ical aesthetic, the similaritymeasurementsmay not generalize
well to broader market preferences, potentially leading to
biased evaluation outcomes.

Additionally, our study’s scope is limited to home audio
speakers with 44 participants, which constrains the general-
izability of findings. The method’s scalability remains un-
proven, as product categories with different design languages
and cultural contexts may respond differently to similarity-
based evaluation. Furthermore, the approach may face chal-
lenges when applied to large-scale or highly complex prod-
ucts such as automobiles, where multiple design elements and
functional constraints interact in more intricate ways than in
compact consumer electronics.

Finally, variance analysis reveals challenges in handling
polarizing designs. Products showing high variance in prefer-

ence ratings (variance > 2.9 in our study) indicate designs that
evoke divided opinions among users, requiring careful con-
sideration within the similarity-based evaluation framework.

C. FUTURE WORK
Our future research should focus on building a robust model
through hyperparameter adjustments such as training data
quantity, batch size, epoch, kernel, padding, and stride. By
tuning these hyperparameters, we aim to investigate whether
the linear relationship between similarity and aesthetic prefer-
ence can be strengthened and further explore their correlation.
Additionally, some principal components were identified as
being related to certain properties, but there are still principal
components that remain unknown. It is necessary to inves-
tigate what features these principal components represent in
products, and which properties related to aesthetic preference
they are associated with.
Second, to address scalability concerns, we plan to conduct

comprehensive validation studies across diverse product cate-
gories and expanded user populations. This multi-domain val-
idation will examine how different design languages and cul-
tural contexts affect similarity-preference correlations, with
particular attention to developing domain-specific adapta-
tions where necessary.
Furthermore, validation of the method as a practical tool

will include Focus Group Interviews (FGI) with senior de-
signers and design professionals to gather expert feedback on
the method’s practical utility and design recommendations.
By combining quantitative validation across multiple product
domains with qualitative insights from experienced practi-
tioners, we aim to establish both the technical generalizability
and practical value of our aesthetic assessment framework.
Lastly, verification is also needed on whether it is possible

to predict aesthetic preference of a product through similarity.
It is necessary to confirm whether the predicted scores on the
linear model of similarity and preference scores for speakers
other than the 30 used as stimuli in this study match the actual
preference scores, and to determine whether the correlations
in property scores remain valid for additional products based
on principal components. Future research requires the ap-
plication of qualitative research methodologies and verifica-
tion in systematic experimental conditions to understand the
causal relationships of properties affecting aesthetic prefer-
ence.
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